

> Conditions

" Exams
" abc-tests
* January to February - registration in SIS

" Passing practical programming tests
" in lab, approx. 3 hours, common sessions for all groups - registration in SIS
= 1st attempts - 2nd half of January
= 2nd attempts - 1st half of February
* 3rd attempts - April
" Creating an individual project
* Agreement on project assignment - until end of November
" Beta version until March 31, 2016
" Final version including documentation until May 20, 2016

Reasonable participation in labs

" Homework assignments

> Conditions may be individually adjusted:
contact your lab teacher during October

" Erasmus students may need dates and deadlines sooner

#include <iostream>

int main(int argc, char * * argv)

{

std: :cout
<< "Hello, world!"
<< std::endl;

return 0;

> Program entry point

" Heritage of the C language
* No classes or namespaces

" Global function "main"
main function arguments

" Command-line arguments
= Split to pieces

" Archaic data types
" Pointer to pointer to char
* Logically: array of strings

std - standard library namespace
cout - standard output

= global variable

<< - stream output

" overloaded operator

endl - line delimiter

" global function (trick!)

More than one module

Module interface described in a
file
.hpp - "header” file

The defining and all the using

modules shall "include" the file
Text-based inclusion

i// main.cpp
| #include "world.hpp"

iint main(int argc, char * * argv)
K
world () ;

return O;

// world.hpp
| #ifndef WORLD_HPP_
| #define WORLD_HPP_

void world();

E #tendif

i// world.cpp
| #include "world.hpp"

i#include <iostream>

| void world()
i

std: :cout << "Hello, world!'"
<< std::endl;

P — 9 !

b o — “

- 5 5 |

BB P © 9 “

o mm 3 m

o N o 9 |

oo .= o o - m

£ AR I ~ @ !

73 L 2A ¥ = |

i B . BF L = 43 “

_ g » . : 9w >N V& “
D._D. “ ® P T N o] i) v 0 |
o v o b — P 0 0, ot _

o [ol g 0 0 e P .. 1
H_H_ L A e % i I @O0 O o 5 g m

o Q o ¥ 9 < T = . o+ |
LL tol o] __CH< d g 0O n]
2 o O > 0 o = A o BV 9] 4] A |
<3z VvYVv §2 i = g g 0 ° VvV "
5 v o QT VI 2 - P “
=% 2 T T v 3 «— |10~ 0 “
S E 53 <o £ 1209 Yv U W |
S 9o 8 o 9 T c b s A - o - -~ !
E T £ £) g | i~ d o “
N E % Er 2 5 ® 0N ® o 5 — - "

int main(int argc, char * * argv)
return O;

// main.cpp
#include "world.hpp"

/I'lostream iostream.obj —’—H

#include <fstream> :

namespace std {

extern ofstream
cout, cerr,

msvcrt.lib

|

// myprog.cpp L} Compiler I—; myprog.obj }_; Linker |_> myprog.exe

#include <iostream>

int main()

{

std::cout <<
"Hello, world\n";

}

Library Library modules
Iinclude files |
5 .gbj
Library dib
User include
Ifiles
-hpp

User modules —p| Compiler |-|_’ Compiled —’—r’ Linker |_> Runnable
[
. Y I_Igbj .exe

myprog.cpp myprog.obj
#include "bee.hpp" .
int main (int,char**) Compiler H 0000: 01010000 ?7??2?7?7?7?7
11010111
{ export main (int,argv*¥)
} return B(7); import Bjint)

bee.hpp

#ifndef bee hpp
#define bee_ hpp
int B(int q);

myprog.exe

0000: 01010000 00001100 11010111
1100: 10010110 00100010

Linker

#endif ‘ 10110001
bee.cpp

#include "bee.hpp" bee.obj

int B(int q) ,—" Compiler J 0000: 10010110 00100010

{ 10110001

} return qtl; export B(int)

Library Library modules
Iinclude files |
5 .6bj
Library dib
User include
Ifiles
-hpp
User modules ’_’ Compiler Compiled Linker Runnable
[
. Y .exe

makefile

Library Library modules
include files
I [I "aY aY1
' L]
Library dib

User include
Ifiles

-hpp T

User modules

Compiler '|-|_> Compiled —’—r’ Linker |_> Runnable
. Tobj exe

Debugger

}

project file

Std. library

Iinclude files
|

User include
Ifiles

-hpp

User modules

o o i e e e B B e . e e

Library

Libréry as distributed
(source)

Std. library
Imodules

é’t%l library

dib

Compiler

'|-|_> Compiled
Tobj

—H_’ Linker |_> Runnable

Library as distributed (binary)

J

Compiler

—’—r» Librarian

Std. library

Iinclude files
|

User include
Ifiles

-hpp

User modules

Std. library
Imodules

é’t%l library

dib

Compiler

'|-|_>

Compiled —’—r’ Linker |_> Runnable
7obj ‘exe

Library as distributed (binary)

Library

hpp

Library

Libréry as distributed
(source)

Stub library ‘ Library
lib

Compiler '|-|_> Compiled —H_> Librarian
' I I bbbl
-0V

Std. library

Iinclude files
|

User include
Ifiles

-hpp

User modules

Std. library
Imodules

é’td. library

Compiler

Compiled

Linker |_>

I

b
A=

Tr»

Runnable

Library as distributed (binary)

Library

hpp

B o e e e e e n SID

Library

Libréry as distributed
(source)

Compiler

Compiled

Librarian

I

Tr»

=)
(A4

> .hpp - "header files"

> Protect against repeated inclusion
#ifndef myfile_ hpp_

#define myfile hpp_
/* w */
#endif

> Use include directive with double-quotes
#include "myfile.hpp"

" Angle-bracket version is dedicated to standard libraries

#include <iostream>

> Use #include only in the beginning of files (after ifndef+define)

> Make header files independent: it must include everything what it needs

> .cpp - "modules”

> Incorporated to the program using a project/makefile
" Never include using #include

> .hpp - "header files"
> Declaration/definitions of types and classes
> Implementation of small functions
" OQutside classes, functions must be marked "inline"

inline int max(int a, int b) { return a >b ? a : b; }

> Headers of large functions
int big_function(int a, int b);

> Extern declarations of global variables
extern int x;
= Consider using singletons instead of global variables

> Any generic code (class/function templates)
" The compiler cannot use the generic code when hidden in a .cpp

> .cpp - "modules”
> Implementation of large functions
" Including "main"
> Definitions of global variables and static class data members
" May contain initialization
int x = 729;

> All identifiers must be declared prior to first use

> Compilers read the code in one pass

> Exception: Member-function bodies are analyzed at the end of the class
" A member function body may use other members declared later

> Generic code involves similar but more elaborate rules
> Cyclic dependences must be broken using declaration + definition
class one; // declaration
class two {
std: :shared _ptr< one> p_;
}i

class one : public two // definition

{};

> Declared class is of limited use before definition
= Cannot be used as base class, data-member type, in new, sizeof etc.

Declarations and definitions

> Declaration
> A construct to declare the existence (of a class/variable/function/...)
" Identifier
" Some basic properties

" Ensures that (some) references to the identifier may be compiled
* Some references may require definition

> Definition
> A construct to completely define (a class/variable/function/...)
= Class contents, variable initialization, function implementation
" Ensures that the compiler may generate runtime representation

> Every definition is a declaration

> Declarations allow (limited) use of identifiers without definition
" Independent compilation of modules
= Solving cyclic dependences
" Minimizing the amount of code that requires (re-)compilation

> One-definition rule #1:

> One translation unit...

(module, i.e. one .cpp file and the .hpp files included from it)

> ... may contain at most one definition of any item

> One-definition rule #2:

> Program...
(i.e. the .exe file including the linked .dll files)
> ... may contain at most one definition of a variable or a non-inline function

" Definitions of classes, types or inline functions may be contained more than once
(due to inclusion of the same .hpp file in different modules)
If these definitions are not identical, undefined behavior will occur
Beware of version mismatch between headers and libraries

" Diagnostics is usually poor (by linker)

N T T

Class class A; class A {
};
Structure struct A; struct A {
(almost
equivalent to };
class)
Union (unusable union A; union A ({
in C++) ...
};
Named type typedef A A2;

typedef A * AP;

typedef std::shared ptr< A> AS;
typedef A AA[10];

typedef A AF (),

typedef AF * AFP1;

typedef A (* AFP2) () ;

typedef std::vector< A> AV;
typedef AV::iterator AVI;

C++11 style of using A2 = A;

named types using AFP2 = A (*) ()’

m Declaration (.hpp or .cpp) Definition (.cpp)

Global function

Static member
function

Nonstatic
member function

Virtual member
function

int £(int, int); int £(int p, int q)
{ return p + q;}

class A { int A::f(int p)
static int £(int p); { return p + 1;
}; }

class A { int A::f(int p)
int £(int p); { return p + 1;

}; }

class A { int A::f(int)

virtual int £(int p); { return O;

}; }

m Declaration (.hpp or .cpp) Definition (.hpp or .cpp)

Global inline
function

Nonstatic inline
member fnc (a)

Nonstatic inline
member fnc (b)

inline int f£(int p, int q)
{ return p + q;
}

class A { inline int A::f(int p)
int £(int p); { return p + 1;
}; }
class A {
int £(int p) { return p+1l;}
};

N T T

Global variable

Static member
variable

Constant
member

Static local
variable

Nonstatic
member variable

Nonstatic local
variable

extern int x, y, z;

class A {

};

static int x, vy,

z,

int x; int y = 729; int z(729);

int u{729};
int A::x; int A::y = 729;
int A::z(729);

int A::z{ 729};
class A {
static const int x = 729;
}s
void £ () {
static int x;
static int y =7, z(7);
static int u{ 7};
}

class A {
int x, y;
};
void £() {
int x;
inty =7, z(7);
int u{ 7},

X

> Where data reside...

> Static storage

" Global, static member, static local variables, string constants
" One instance per process

" Allocated by compiler/linker/loader (listed in .obj/.dll/.exe)

> Thread-local storage
" Variables marked "thread_local"

* One instance per thread
> Automatic storage (stack or register)

" Local variables, parameters, anonymous objects, temporaries
" One instance per function invocation (execution of defining statement)

" Placement by compiler, space allocated by compiler-generated instructions
> Dynamic allocation

" new/delete operators
* The programmer is responsible for deallocation, no garbage collection

= Allocation by library routines
= Significantly slower than other storage classes

> Where data reside...

> Static storage
T x; // global variable

> Thread-local storage
thread local T x; // global variable

> Automatic storage (stack or register)
void f() {

T x; // local variable

> Dynamic allocation
void f() {

T*p=new T ;
/] ..
delete p;

> Use smart pointers instead of raw (T *) pointers
#include <memory>

" one owner (pointer cannot be copied)
* no runtime cost (comparedto T *)

void f() {
std::unique ptr< T> p = new T;
std::unique ptr< T> q = std::move(p); // pointer moved to ¢, p becomes nullptr
}
" shared ownership
* runtime cost of reference counting
void f() {

std::shared_ptr< T> p

std: :make_shared< T>(); // invokes new

std::shared ptr< T> q = p; // pointer copied to q

> Memory is deallocated when the last owner disappears
" Destructor of (or assignment to) the smart pointer invokes delete when required
" Reference counting cannot deallocate cyclic structures

> Dynamic allocation is slow
> compared to static/automatic storage
> the reason is cache behavior, not the allocation itself

> Use dynamic allocation only when necessary
> variable-sized or large arrays
> polymorphic containers (objects with inheritance)
> object lifetimes not corresponding to function invocations

> Avoid data structures with individually allocated items

> linked lists, binary trees, ...

= std::list, std::map, ...
> prefer B-trees (yes, also in memory) or hash tables
> avoiding is difficult - do it only if speed is important

> This is how C++ programs may be made faster than C#/java
> C#/java requires dynamic allocation of every class instance

Fixed size

Variable size

static const std::size t n

3;

std::array< T, n> a;

al 0] = /*...*/;

al 11.1();

std::size t n = /*...*/;
std::vector< T> a(n);

al[0] = /*...*/;
al 11.f();

std::tuple< T1, T2, T3> a;

std::get< 0>(a) = /*...*/;
std::get< 1>(a).f();

std::vector< std::unique ptr< Thase>>
a;
a.push back(new T1);
a.push back(new T2);
a.push back(new T3);

al 11->f();

std::array< T, 3> std: :tuple< T1, T2, T3>

1 1 T1 T2 T3

std::vector< T> std::vector< std::unique ptr<Tbase>>

NS

N ole)

Frequently used data types

bool

false, true

char

character (ASCII, 8 bit)

std: :wchar_t

character (Unicode, 16/32 bit)

int signed integer (~32 bit)
unsigned unsigned integer (~32 bit)
long long extra large signed integer (~64 bit)

unsigned long long

extra large unsigned integer (~64 bit)

std::size_t

unsigned integer large enough for array sizes (32/64 bit)

double

"double precision" floating-point number (Intel: 64 bit)

long double

extended precision floating-point number (Intel: 80 bit)

std: :complex<double>

complex number of double precision

std: :string string (containing char)

std: :wstring string (containing std::wchar_t)

std: :istream input stream (containing char)

std: :wistream input stream (containing std::wchar_t)
std: :ostream output stream (containing char)

std: :wostream output stream (containing std::wchar_t)

struct T { .. }

structure (almost equivalent to class)

std: :pair<T1l,T2> pair of T1 and T2

std: :tuple<Tl,...> k-tuple of various types

std: :array<T,n> fixed-size array of T

std: :vector<T> variable-size array of T

std: :1list<T> doubly linked list of T

std: :map<K, T> ordered associative container of T indexed by K
std: :multimap<K, T> ordered associative container with multiplicity of keys
std: :unordered map<K,T> hash table of T indexed by K

std: :unordered multimap<K,T> | hash table with multiplicity of keys

class X {
/¥...%/
}i

> Class in C++ is an extremely powerful construct
" Other languages often have several less powerful constructs (class+interface)

> Requires caution and conventions

> Three degrees of usage
> Non-instantiated class - a pack of declarations (used in generic programming)
> Class with data members
> Class with inheritance and virtual functions (object-oriented programming)

> class = struct
> struct members are by default public
" by convention used for simple or non-instantiated classes

> class members are by default private
" by convention used for large classes and OOP

class X {
public:
typedef int t;

static const int c =
1;

static int f(int p)
{ return p + 1; }
}s

class Y {
public:
Y()
:m_(0)
{}
int get m() const
{ return m_; }
void set m(int m)
{m_=m }
private:
int m_;

}i

class U {
public:
void f()
{f_0; }
private:
virtual void f () = 0;

}i

class V : public U {
public:

V() : m_(0) {}
private:

int m_;

virtual void f_()

{ ++m_; }

}i

class X {

> Type and static members...

ublic: . ey
P > Nested class definitions
class N { /*...*/ }; .o

> typedef definitions
typedef unsigned long t;

> static member constants

static const t c 1;

. > static member functions
static t f(t p)

> static member variables
{ return p + v_; }

private: > ... are not bound to any class
static t v_;// declaration of X::v_ instance (object)
}i > Equivalent to global

types/variables/functions

X::t X::v = X::c; definition of X::v . .pe
- ! - > But referenced using qualified names

(prefix X::)
void f2() > Encapsulation in a class avoids name
{ clashes
X::t a =1; " But namespaces do it better
a = X::f(a); > Some members may be private
} > Class may be passed to a template

> Class definitions are intended for objects
* Static members must be explicitly marked

> Class members may be public/protected/private
class X {

public:

class N { /*...*/ };

typedef unsigned long t;

static const t ¢ = 1;

static t f(t p)

{ return p + v; }

static t v; // declaration of X::v
}i

> Class must be defined in one piece

* Definitions of class members may be placed outside
X::t X::v = X::c; // definition of X::v

void f2()
{

a=X::f(a);

> A class may become a template argument
typedef some_generic_class< X> specific_class;

> Namespace members are always static
* No objects can be made from namespaces

* Functions/variables are not automatically inline/extern
namespace X {

class N { /*...*/ };
typedef unsigned long t;
const t ¢ = 1;
inline t f(t p)
{ return p + v; }
extern t v; // declaration of X::v
}i
> Namespace may be reopened
* Namespace may be split into several header files

* Definitions of namespace members must reopen it
namespace X {

tv=oc; // definition of X::v
}i
> Namespace members can be made directly visible

* "using namespace"
void f2()

{
X::t a=1;
using namespace X;

a=f(a);

class Y {

public:
Y()
:m_(0)
{}
int get _m() const
{ return m_; }
void set m(int m)
{m_=m; }
private:
int m_;

}i

> Class (i.e. type) may be
instantiated (into objects)
> Using a variable of class type
Y vl;
" This is NOT a reference!

> Dynamically allocated

" Held by a (smart) pointer
std::unique_ptr< Y> p = new Y;

std::shared ptr< Y> q =

std: :make_shared< Y>();

> Element of a larger type
typedef std::array< Y, 5> A;
class C1 { public: Y v; };
class C2 : public Y {};

" Embedded into the larger type
" NO explicit instantiation by new!

class Y {

public:
Y()
:m_(0)
{}
int get _m() const
{ return m_; }
void set m(int m)
{m_=m; }
private:
int m_;

}i

> Class (i.e. type) may be instantiated
(into objects)
Y vl;
std::unique_ptr< Y> p = new Y;
> Non-static data members constitute the
object
> Non-static member functions are
invoked on the object

> Object must be specified when referring
to non-static members
vl.get m()
p->set_m(0)

" References from outside may be
prohibited by "private"/"protected"

vl.m_ // error

" Only "const" methods may be called on
const objects

const Y * pp = p.get(); // secondary pointer
pp->set_m(0) // error

» References
T &

const T &

" Builtin C++
* Syntactically identical to values when used (r.a)
> Raw pointers
T 3
const T *
* Builtin C/C++
* Requires special operators to access the referenced value (*p, p->a)
* Pointer arithmetics allows to access adjacent values residing in arrays
* Manual allocation/deallocation
> Smart pointers
std::shared_ptr< T>

std: :unique_ptr< T>

* Class templates in standard C++ library

* Operators to access the referenced value same as with raw pointers (*p, p->a)

* Represents ownership - automatic deallocation on destruction of the last reference
> Iterators

K::iterator
K::const_iterator
* Classes associated to every kind of container (K) in standard C++ library

* Operators to access the referenced value same as with raw pointers (*p, p->a)
* Pointer arithmetics allows to access adjacent values in the container

class T { class T {
public int a; public:
} int a;

};

class test |

static void f(T z) void £(T * z)
{ {

z.a = 3; z->a = 3;
} }

static void g()
{

T x = new T(),
// allocation

void g()
{

T * x = new T;
// allocation

x.a =1,
x->a = 1;
Ty =x; .
// second reference T Yy = Xx;

// second pointer

y.a = 2;
// x.a == 2 y->a = 2;
// x->a == 2
£(x);
// x.a == 3 £(x);

// x->a == 3
// garbage collector will later
// reclaim the memory when needed delete x;
} // manual deallocation

class T { class T {
public int a; public:
} int a;

}s

class test |

static void £f(T z) void £(T * z)
{ {
z.a = 3; z->a = 3;
} }
static void g() void g()
{ {
T x = new T(), std: :shared ptr< T> x =
// allocation std: :make_shared< T>();
// allocation
x.a =1;
x->a = 1;
Ty = x;
// second reference std: :shared ptr< T> y = x;
// second pointer
y.a = 2;
// x.a == 2 y->a = 2;
// x->a == 2
£(x);
// x.a == 3 f(x);

// x->a == 3
// garbage collector will later
// reclaim the memory when needed // automatic deallocation
} // when pointers are destructed

class T {
public int a;,

}

class test |
static void £(T z)

{
z.a = 3;
}
static void g()
{
T x = new T(),
// allocation
x.a =1,
Ty = x;
// second reference
y.a = 2;
// x.a == 2
£(x);
// x.a == 3
// garbage collector will later
// reclaim the memory when needed
}

class T {
public:

};

int a;

void £(T & z)

T x; // automatic storage (stack)

T &y = Xx;
// a reference to the stack object

y.a = 2;

// x.a == 2
£f(x);

// x.a == 3

// x is destructed on exit

struct T { class T {
int a; public:
} int a;

};

class test {

static void £f(T z) void £(T z)
{ {
z.a = 3; z.a = 3;
} }
static void g() void g()
{
T x; { T x;
// creation /} creation
x.a =1; x.a =1;
Ty = x; T = x-:
// a copy 3/’/—a ;OPY
y.a = 2;
/) x.a == 1 y.7,/= 2; L
X.a ==
£f(x);
// x.a == 1 f(/j);
x.a =1

// destruction on exit
} // destruction on exit

struct T { class T {
int a;, public:
} int a;

};

class test {

static void f(ref T z) void £(T & z)
{ {
z.a = 3; z.a = 3;
} }
static void g() void g()
{ {
T x; T x;
// creation
x.a =1;
x.a = 1;
£(x);
f(ref x); // x.a ==
// x.a == 3 }
}

class T {
public int a;

}

class test {
static void f(ref T z)

{
z = new T();,
// allocation of another object

static void g()
{

T x = new T(),
// allocation

f(ref x);,
// x is now a different object

// deallocation later by GC
}

class T {
public:
int a;

};

void f(std::unique ptr<T> & z)
{
Z = new T;
// allocation of another object
// deallocation of the old object

void g()

{
std: :unique ptr< T> x = new T;
// allocation

£(x);
// *x is now a different object

// deallocation by destruction of x

}

> C++ allows several ways of passing links to objects
> smart pointers
> C-like pointers
> references

> Technically, all the forms allow almost everything
> At least using dirty tricks to bypass language rules

> By convention, the use of a specific form signalizes some intent
> Conventions (and language rules) limits the way how the object is used
> Conventions help to avoid "what-if" questions

" What if someone destroys the object | am dealing with?

" What if someone modifies the contents of the object unexpectedly?

What the recipient | For how long? What the others

may do? will do meanwhile?
std::unique ptr<T Modifythe contents Asrequired Nothing
> - and destroy the
object
std::shared ptr<T Modifythe contents Asrequired Read/modify the
> a contents
T * Modify the contents Until notified to Read/modify the

stop/by agreement contents

const T * Read the contents Until notified to Modify the contents
stop/by agreement

T & Modify the contents During a Nothing (usually)
call/statement

const T & Read the contents During a Nothing (usually)
call/statement

channel ch;

void send_hello()

{

std::unique_ptr< packet> p = new packet;
p->set_contents("Hello, world!");
ch.send(std::move(p));

// p is nullptr now

void dump_channel()

{

}

while (! ch.empty())
{

std::unique_ptr< packet> m =
ch.receive();

std::cout << m->get contents();

// the packet is deallocated here

class packet { /*...*/ };

class channel
{
public:

void send(std::unique_ ptr< packet>
q);

bool empty() const;

std: :unique_ptr< packet> receive();

private:
/*¥...%/
b

channel ch;

void send_hello()

{
std::unique_ptr< packet> p = new packet;
p->set_contents("Hello, world!");
ch.send(std::move(p));

// p is nullptr now

void dump_channel()
{
while (! ch.empty())
{
std: :unique_ptr< packet> m = ch.receive();
std::cout << m->get_contents();

// the packet is deallocated here

class packet { /*...*/ };

class channel

public:

void send(std::unique_ptr< packet> q)

{
q_.push_back(std::move(q));

std::unique_ptr< packet> receive()

{

std::unique_ptr< packet> r =
std: :move(q_.front());

// remove the nullptr from the queue
q_.pop_front();

return r;

}

private:

std: :deque< std::unique_ptr< packet>> q_;

class sender {
public:
sender(std::shared_ptr< channel> ch)
: ch_(ch) {}
void send hello()
{ /*...*/ ch_->send(/*...*/); }
private:

std::shared_ptr< channel> ch_;

}i

class recipient {
public:
recipient(std::shared_ptr< channel> ch)
: ch_(ch) {}
void dump_channel()
{ /*...*%/ = ch_->receive(); /*...*/ }
private:

std::shared_ptr< channel> ch_;

}

class channel { /*...*/ };

std::unique_ptr< sender> s;

std::unique_ptr< recipient> r;

void init()
{

std::shared_ptr< channel> ch =
std: :make_shared< channel>();

s.reset(new sender(ch));

r.reset(new recipient(ch));

void kill sender()

{ s.reset(); }

void kill_recipient()
{ r.reset(); }

" The server and the recipient may be
destroyed in any order

* The last one will destroy the channel

class sender { class channel { /*...*/ };

public:
sender(channel * ch) std: :unique_ptr< channel> ch;
. ch_(ch) {} std::unique_ptr< sender> s;
void send hello() std::unique ptr< recipient> r;

{ /*...*/ ch_->send(/*...*/); }
private: void init()

channel * ch_;

}i

ch.reset(new channel);
s.reset(new sender(ch.get()));

r.reset(new recipient(ch.get()));
class recipient {

public:

recipient(channel * ch) void shutdown()

: ch_(ch) {} { s.reset();
void dump_channel() r.reset();
{ /*...*/ = ch_->receive(); /*...*/ } ch.reset();
private: }
channel * ch_; " The server and the recipient must be destroyed

before the destruction of the channel

}

class sender {

public:
sender(channel * ch)
: ch_(ch) {}
void send hello()
{ /*...*/ ch_->send(/*...*/); }
private:
channel * ch_;

}i

class recipient {
public:

recipient(channel * ch)

: ch_(ch) {}

void dump_channel()

{ /*...*/ = ch_->receive(); /*...*/ }
private:

channel * ch_;

}

void do_it(sender &, receiver &);
void do_it all()
{

channel ch;
sender s(& ch);

recipient r(& ch);

do it(s, r);

" The need to use "&" in constructor
parameters warns of long life of the
reference

= "&" - converts reference to pointer

a Nxn

- converts pointer to reference

" Local variables are automatically
destructed in the reverse order of
construction

class sender { void do_it(sender &, receiver &);

public: void do_it_all()
sender(channel & ch)
: ch_(ch) {} {
void send hello() channel ch;
{ /*...%/ ch_.send(/*...*/); } sender s(ch);
private: recipient r(ch);

channel & ch_;

b do it(s, r);

class recipient {
public: " s and r will hold the reference to ch

recipient(channel & ch) for their lifetime

. ch_(ch) {} " There is no warning of that!

void dump_channel() " If references are held by locally
{ /*...*/ = ch .receive(); /*...*/ } allocated objects, everything is OK

private: Destruction occurs in reverse order

channel & ch_;

}

class sender { std::unique_ptr< sender> s;

public: std::unique_ptr< recipient> r;

sender(channel & ch)

: ch_(ch) {}
void send_hello() void init()
{ /*...*/ ch_.send(/*...*/); } {
private: channel ch;

channel & ch_; s.reset(new sender(ch));

b r.reset(new recipient(ch));
class recipient { }
public:
recipient(channel & ch) * ch will die sooner than s and r
: ch_(ch) {} * s and r will access invalid object
void dump_channel() * Fatal crash sooner or later
{ /*...*/ = ch_.receive(); /*...*/ } " Nothing warns of this behavior
private: * Prefer pointers in this case

channel & ch_;

}

class sender { std::unique_ptr< channel> ch;

public:

sender(channel & ch) . .
void do_1t()

: ch_(ch) {}
void send hello() {
{ /*...%/ ch_.send(/*...*/); } ch.reset(new channel);
private: sender s(ch.get());
channel & ch_; recipient r(ch.get());
b do_it(s, r);

o ch.reset(new channel);
class recipient {

do_it(s, r);

public:
recipient(channel & ch) }
: ch_(ch) {}
void dump_channel() | = chis destructed before s and r
{ /*...%/ = ch_.receive(); /*...*/ } " Fatal crash sooner or later
private:

" Rare programming practice
channel & ch_;

}

channel ch;

void send_hello()

{
std::unique_ptr< packet> p = new packet;
p->set_contents("Hello, world!");
ch.send(std::move(p));
// p is nullptr now

void dump_channel()
{
while (! ch.empty())
{
std::unique_ptr< packet> m = ch.receive();
std::cout << m->get_contents();

// the packet is deallocated here

class packet {

void set contents(const std::string &
s);

const std::string & get_contents() const;
/*¥.0.0.0%/

}i
> get_contents returns a reference to

data stored inside the packet
" const prohibits modification

> How long the reference is valid?

" Probably until modification/destruction
of the packet

" It will last at least during the statement
containing the call

* Provided there is no other action on the
packet in the same statement

> set_contents receives a reference to
data stored elsewhere
= const prohibits modification
" the reference is valid throughout the call

>»Functions which compute their return values must NOT return by reference
" the computed value usually differs from values of arguments

" the value of arguments must not be changed

" there is nothing that the reference might point to

* |nvalid idea #1: Local variable

Complex & add(const Complex & a, const Complex & b)
{

Complex r(a.Re + b.Re, a.Im + b.Im);

return r;

" RUNTIME ERROR: r disappears during exit from the function
before the calling statement can read it

>»Functions which compute their return values must NOT return by reference
" the computed value usually differs from values of arguments

" the value of arguments must not be changed

" there is nothing that the reference might point to

" |nvalid idea #2: Dynamic allocation

Complex & add(const Complex & a, const Complex & b)
{

Complex * r = new Complex(a.Re + b.Re, a.Im + b.Im);

return * r;

" PROBLEM: who will deallocate the object?

>»Functions which compute their return values must NOT return by reference
" the computed value usually differs from values of arguments

" the value of arguments must not be changed

" there is nothing that the reference might point to

* Invalid idea #3: Global variable

Complex g;
Complex & add(const Complex & a, const Complex & b)

{
g = Complex(a.Re + b.Re, a.Im + b.Im);

return g;

" PROBLEM: the variable is shared

Complex a, b, ¢, d, e = add(add(a, b), add(c, d));

>Functions which compute their return values must return by value
" the computed value usually differs from values of arguments

" the value of arguments must not be changed

" there is nothing that a reference might point to

" (The only) correct function interface:

Complex add(const Complex & a, const Complex & b)
{
Complex r(a.Re + b.Re, a.Im + b.Im);

return r;

This body may be shortened to (equivalent by definition):

return Complex(a.Re + b.Re, a.Im + b.Im);

»Functions which enable access to existing objects may return by reference
* the object must survive the return from the function

" Example:

template< typename T, std::size t N> class array {
public:

T & at(std::size_t i)

{

return a_[i];

}
private:

T a_[NI;
}i

* Returning by reference may allow modification of the returned object

array< int, 5> x;

x.at(1) = 2;

> Functions which enable access to existing objects may return by reference

* Often there are two versions of such function

template< typename T, std::size_t N> class array {
public:

* Allowing modification of elements of a modifiable container
T & at(std::size_t i)

{ return a_ [il; }

* Read-only access to elements of a read-only container
const T & at(std::size_t i) const

{ return a_[il; }

private:
T a_[NI;
}i
void f(array< int, 5> & p, const array< int, 5> & q)
{
p.at(1) = p.at(2); // non-const version in BOTH cases

int x = q.at(3); // const version

> Functions which enable access to existing objects may return by reference
" The object must survive the return from the function

template< typename T> class vector {

public:
* back returns the last element which will remain on the stack
* it may allow modification of the element
T & back();

const T & back() const;

this pop_back removes the last element from the stack and returns its value
" it must return by value - slow (and exception-unsafe)
T pop_back();

" therefore, in standard library, the pop_back function returns nothing
void pop_back();

// ...
}i

Standard Template Library

> Containers
> Generic data structures
" Based on arrays, linked lists, trees, or hash-tables

> Store objects of given type (template parameter)

> The container takes care of allocation/deallocation of the stored objects

= All objects must be of the same type (defined by the template parameter)
* Containers can not directly store polymorphic objects with inheritance

" New objects are inserted by copying/moving/constructing in place
* Containers can not hold objects created outside them

> Inserting/removing objects: Member functions of the container
> Reading/modifying objects: Iterators

#include <deque>

typedef std::deque< int> my_deque;

my_deque the_deque;

the_deque.push_back(1);
the_deque.push_back(2);
the_deque.push_back(3);
int x = the_deque.front(); // 1

the_deque.pop_front();

my _deque::iterator ib the_deque.begin();

my_deque::iterator ie = the_deque.end();
for (my_deque::iterator it = ib; it != ie; ++it)
{
*it = *it + 3;
}
int y = the_deque.back(); // 6

the_deque.pop_back()
int z = the_deque.back(); // 5

> Sequential containers

> New objects are inserted in specified location
= array< T, N> - pole se staticky danou velikosti
" vector< T> - pole prvku s pridavanim zprava
" stack< T> - zasobnik
" priority_queue< T> - prioritni fronta

basic_string< T> - vektor s terminatorem
" string = basic_string< char> - retézec (ASCII)
" wstring = basic_string< wchar_t> - fetézec (Unicode)

deque< T> - fronta s pridavanim a odebiranim z obou stran
" gueue< T> - fronta (maskovana deque)

forward_list< T> - jednosmérné vazany seznam

list< T> - obousmérné vazany seznam

> Sequential containers
> New objects are inserted in specified location

> array< T, N> - fixed-size array (no insertion/removal)
> vector< T> - array, fast insertion/removal at the back end
" stack< T> - insertion/removal only at the top (back end)
" priority_queue< T> - priority queue (heap implemented in vector)
> basic_string< T> - vektor s terminatorem
" string = basic_string< char>
" wstring = basic_string< wchar_t>
> deque< T> - fast insertion/removal at both ends
" queue< T> - FIFO (insert to back, remove from front)

> forward_list< T> - linked list
> list< T> - doubly-linked list

> Associative containers

> New objects are inserted at a position defined by their properties
" sets: type T must define ordering relation or hash function

" maps: stored objects are of type pair< const K, T>
* type K must define ordering or hash

" multi-: multiple objects with the same (equivalent) key value may be inserted

> Ordered (implemented usually by red-black trees)
" set<T>
" multiset<T>
" map<K,T>
" multimap<K,T>
> Hashed
" unordered_set<T>
" unordered_multiset<T>
" unordered_map<K,T>
" unordered_multimap<K,T>

> Ordered containers require ordering relation on the key type
" Only < is used (no need to define >, <=, >=, ==, |=)
* In simplest cases, the type has a built-in ordering
std::map< std::string, my value> my map;

* If not built-in, ordering may be defined using a global function
bool operator<(const my key & a, const my key & b) { return /*...*/; }

std: :map< my_key, my_value> mapa;

* If global definition is not appropriate, ordering may be defined using a functor
struct my functor {

bool operator()(const my_key & a, const my key & b) const { return /*...*/; }
}s

std: :map< my_key, my_value, my_functor> my_map;

* If the ordering has run-time parameters, the functor will carry them
struct my functor { my_ functor(bool a); /*...*/ bool ascending; };

std: :map< my_key, my_value, my_functor> my_map(my_functor(true));

> Hashed containers require two functors: hash function and equality
comparison
struct my_ hash {

std::size t operator()(const my key & a) const { /*...*/ }
}i
struct my equal { public:

bool operator()(const my key & a, const my key & b) const { /*return a == b;*/

}
}i

std: :unordered_map< my_key, my value, my hash, my equal> my map;

> If not explicitly defined by container template parameters, hashed containers
try to use generic functors defined in the library
* std::hash< K>
" std::equal_to< K>
" Defined for numeric types, strings, and some other library types
std::unordered_map< std::string, my_ value> my_map;

> Each container defines two member types: iterator and const_iterator
using my container = std::map< my_key, my value>;

using my iterator = my container::iterator;

using my_const_iterator = my_container::const_iterator;

> Iterators act like pointers to objects inside the container
" objects are accessed using operators *, ->
= const_iterator does not allow modification of the objects

> An iterator may point
" to an object inside the container
" to an imaginary position behind the last object: end()

void example(my_container & cl, const my_container & c2)
{
> Every container defines functions to access both ends of the container

* begin(), cbegin() - the first object (same as end() if the container is empty)

* end(), cend() - the imaginary position behind the last object
my_iterator il = begin(cl); // also cl.begin()

my_const_iterator i2 = cbegin(cl); // also cl.cbegin(), begin(cl), cl.begin()
my_const_iterator i3 = cbegin(c2); // also c2.cbegin(), begin(c2), c2.begin()
> Associative containers allow searching

* find(k) - first object equal (i.e. not less and not greater) to k, end() if not found

* lower_bound(k) - first object not less than k , end() if not found

* upper_bound(k) - first object greater than k , end() if not found
my_key k = /*...*/;
my_iterator i4 = cl.find(k);

my_const_iterator i5 = c2.find(k);

> |terators may be shifted to neighbors in the container

* all iterators allow shifting to the right and equality comparison
for (my_iterator i6 = cl.begin(); i6 != cl.end(); ++ i6) { /*...*/ }

* bidirectional iterators (all containers except forward_list) allow shifting to the left
-- il;
* random access iterators (vector, string, deque) allow addition/subtraction of integers, difference and comparison
my_container::difference_type delta = i4 - cl.begin(); // number of objects left to i4
my_iterator i7 = cl.end() - delta; // the same distance from the opposite end
if (i4 < i7)

my_value v = i4[delta].second; // same as (*(i4 + delta)).second, (i4 + delta)->second

> Caution:

= Shifting an iterator before begin() or after end() is illegal

for (my iterator it = cl.end(); it >= cl.begin(); -- it) // ERROR: underruns
begin()

" Comparing iterators associated to different (instances of) containers is illegal
if (cl.begin() < c2.begin()) // ILLEGAL

" Insertion/removal of objects in vector/basic_string/deque invalidate all associated
iterators

* The only valid iterator is the one returned from insert/erase
std::vector< std::string> c(10, "dummy");

auto it = c.begin() + 5; // the sixth dummy
std::cout << * it;

auto it2 = c.insert(std::begin(), "first");
std::cout << * it; // CRASH

it2 += 6; // the sixth dummy
c.push_back("last");

std::cout << * it2; // CRASH

" Containers may be filled immediately upon construction
" using n copies of the same object
std::vector< std::string> cl(10, "dummy");

= or by copying from another container
std::vector< std::string> c2(cl.begin() + 2, cl.end() - 2);
> Expanding containers - insertion
" insert - copy or move an object into container
" emplace - construct a new object (with given parameters) inside container
> Sequential containers
" position specified explicitly by an iterator
" new object(s) will be inserted before this position

cl.insert(cl.begin(), "front");
cl.insert(cl.begin() + 5, "middle");

cl.insert(cl.end(), "back"); // same as cl.push_back("back");

> insert by copy
> slow if copy is expensive

std: :vector< std::vector< int>> c3;

> not applicable if copy is prohibited

std::vector< std::unique_ptr< T>> c4;

> insert by move

> explicitly using std::move
std: :unique _ptr< T> p(new T);
c4.push_back(std::move(p));

> implicitly when argument is rvalue (temporal object)
c3.insert(begin(c3), std::vector< int>(100, 0));

> emplace

> constructs a new element from given arguments
c4.emplace back(new T);

c3.insert(begin(c3), 100, 0);

> Shrinking containers - erase/pop
> single object

my_iterator it = /*...*/;

cl.erase(it);

c2.erase(c2.end() - 1); // same as c2.pop_back();
> range of objects

my_iterator itl = /*...*/, it2 = /*...*/;

cl.erase(itl, it2);

c2.erase(c2.begin(), c2.end()); // same as c2.clear();
> by key (associative containers only)

my_key k = /*...*/;

c3.erase(k);

> Set of generic functions working on containers

> cca 90 functions, trivial or sophisticated (sort, make_heap, set_intersection, ...)
#include <algorithm>

> Containers are accessed indirectly - using iterators
" Typically a pair of iterator specifies a range inside a container
= Algorithms may be run on complete containers or parts
" Anything that looks like an iterator may be used
> Some algorithms are read-only
" The result is often an iterator
" E.g., searching in non-associative containers
> Most algorithms modify the contents of a container
" Copying, moving (using std::move), or swapping (pomoci std::swap) elements
" Applying user-defined action on elements (defined by functors)
> Iterators does not allow insertion/deletion of container elements
" The space for "new" elements must be created before calling an algorithm
" Removal of unnecessary elements must be done after returning from an algorithm

> |terators does not allow insertion/deletion of container elements

" The space for "new" elements must be created before calling an algorithm
my container c2(cl.size(), 0);

std::copy(cl.begin(), cl.end(), c2.begin());

" Note: This example does not require algorithms:
my container c2(cl.begin(), cl.end());

" Removal of unnecessary elements must be done after returning from an algorithm
auto my predicate = /*...*/; // some condition

my container c2(cl.size(), 0); // max size
my iterator it2 = std::copy if(cl.begin(), cl.end(), c2.begin(), my predicate);

c2.erase(it2, c2.end()); // shrink to really required size

my iterator itl = std::remove_if(cl.begin(), cl.end(), my predicate);

cl.erase(itl, cl.end()); // really remove unnecessary elements

> Fake iterators
= Algorithms may accept anything that works like an iterator

" The required functionality is specified by iterator category
" Input, Output, Forward, Bidirectional, RandomAccess

" Every iterator must specify its category and some other properties
= std::iterator_traits
" Some algorithms change their implementation based on the category (std::distance)

" Inserters
my container c2; // empty

auto my inserter = std::back inserter(c2);

std::copy if(cl.begin(), cl.end(), my inserter, my predicate);

" Text input/output
auto my_inserter2 = std::ostream_iterator< int>(std::cout, " ");

std::copy(cl.begin(), cl.end(), my_inserter2);

> Example - for_each

template<class InputIterator, class Function>
Function for_each(InputIterator first, InputIterator last, Function f)
{
for (; first != last; ++first)
f(* first);

return f;

" f may be anything that has the function call operator f(x)
* aglobal function (pointer to function), or
" afunctor, i.e. a class containing operator()

" The function f (its operator()) is called for each element in the given range
" The element is accessed using the * operator which typically return a reference
* The function f can modify the elements of the container

> A simple application of for_each
void my_function(double & x)

{
X += 1;
}
void increment(std::list< double> & c)
{
std::for_each(c.begin(), c.end(), my function);
}

> [C++11] Lambda

" New syntax construct - generates a functor
void increment(std::list< double> & c)

{
for_each(c.begin(), c.end(), []1(double & x){ x += 1;});

> Passing parameters requires a functor
class my_functor {

public:
double v;
void operator()(double & x) const { x += v; }

my_functor(double p) : v(p) {}

}i
void add(std::list< double> & c, double value)
{
std::for_each(c.begin(), c.end(), my_ functor(value));
}

> Equivalent implementation using lambda
void add(std::list< double> & c, double value)

{

std::for_each(c.begin(), c.end(), [value](double & x){ x += value;});

> A functor may modify its contents

class my_ functor {
public:
double s;
void operator()(const double & x) { s += x; }

my_functor() : s(0.0) {}

}i

double sum(const std::list< double> & c)

{
my functor f = std::for_each(c.begin(), c.end(), my_functor());
return f.s;

¥

> Using lambda (the generated functor contains a reference to s)
double sum(const std::list< double> & c)

{ double s = 0.0;
for_each(c.begin(), c.end(), [& s](const double & x){ s += x;1});

return s;

> Lambda expression

[capture |(params) mutable -> rettype { body }

" Declares a class
class ftor {

public:
ftor(TList ... plist) : vlist(plist) ... { }
rettype operator()(params) const { body }
private:
TList ... vlist;
i
= vlist determined by local variables used in the body

" TList determined by their types and adjusted by capture
* operator() is const if mutable not present

" The lambda expression corresponds to creation of an anonymous object

ftor(vlist ...) C++11

> Return type of the operator()
Explicitly defined
[1() -> int { /*.*/ }
* Automatically derived if body contains just one return statement
[1() { return V; }

* void otherwise

> Capture

* Defines which external variables are accessible and how
* |ocal variables in the enclosing function
* this, if used in a member function

" Determines the data members of the functor
" Explicit capture
* The external variables explicitly listed in capture
[a,&b, c,&d, this]
= variables marked & passed by reference, the others by value
" Implicit capture

* The required external variables determined automatically by the compiler,
capture defines the mode of passing

[=]
[=,&b, &d]

= passed by value, the listed exceptions by reference
[&]

[&,a,c]

= passed by reference, the listed exceptions by value

> Constructor of class T is a method named T
" Return type not specified
" More than one constructor may exist with different arguments
* Never virtual
" A constructor is called whenever an object of the type T is created
* Constructor parameters specified in the moment of creation
* Some constructors have special meaning
* Some constructors may be generated by the compiler

" Constructors cannot be called directly
> Destructor of class T is a method named ~T

* No arguments, no return value
" May be virtual

" The destructor is called whenever an object of the type T is destroyed
* The destructors may be generated by the compiler

" Explicit call must use special syntax

"

> Default constructor
T();

" For object without explicit initialization

" Generated by compiler if required and if the class has no constructor at all:

* Data members of non-class types are not initialized

= Data members of class types and base classes are initialized by calling their default
constructors
* Generation may fail due to non-existence or inaccessibility of element constructors

> Destructor
~T();

" Generated by compiler if required and not defined
* (Calls destructors of data members and base classes
" If a class derived from T has to be destroyed using T *, the destructor of T must be

virtual
= All abstract classes shall have a virtual destructor

virtual ~T();

> Special member functions

" Copy constructor
T(const T & x);

" Move constructor
T(T && x);

" Copy assignment operator
T & operator=(const T & x);

" Move assignment operator
T & operator=(T && Xx);

> Compiler-generated implementation
" Copy constructor
T(const T & x) = default;
* applies copy constructor to every element
" Move constructor
T(T & x) = default;
= applies move constructor to every element
" Copy assignment operator
T & operator=(const T & x) = default;
= applies copy assignment to every element
" Move assignment operator
T & operator=(T && x) = default;

= applies move assignment to every element

" elements are data members and base classes
" for elements of non-class types, move is equivalent to copy

" the default keyword allows to enforce generation by the compiler

> If needed, compiler will generate the methods automatically under
these conditions:

> Copy constructor/assignment operator
" if there is no definition for the method and no move method is defined

" this is backward-compatibility rule; future development of the language will probably
make the condition more stringent (no copy/move/destructor at all)

> Move constructor/assignment operator
" if no copy/move method is defined and no destructor is defined

> the default keyword overrides the conditions

> Most-frequent cases

> A harmless class
" No copy/move method, no destructor
" No dangerous data members (raw pointers)

> A class containing dangerous members
" Compiler-generated behavior (default) would not work properly

" No move support (before C++11, still functional but not optimal)
T(const T & x);

T & operator=(const T & x);
~T();

" Full copy/move support
T(const T & x);

T(T & x);

T & operator=(const T & Xx);
T & operator=(T && Xx);
~T();

> Less frequent cases

> A non-copiable and non-movable class

" E.g., dynamically allocated "live" objects in simulations
T(const T & x) = delete;

T & operator=(const T & x) = delete;
" The delete keyword prohibits automatic default for copy methods

" Language rules prohibit automatic default for move methods
" A destructor may be required

> A movable non-copiable class

" E.g., an owner of another object (like std::unique_ptr< U>)
T(T && Xx);

T & operator=(T && Xx);

~T();
" Language rules prohibit automatic default for copy methods
" A destructor is typically required

> Handling data members in constructors and destructors

> Numeric types
" Explicit initialization recommended, no destruction required

" Compiler-generated copy/move works properly

> Structs/classes

" If they have no copy/move methods, they behave as if their members were present
directly

" If they have copy/move methods, they usually do not require special handling

= Special handling required if the outer class semantics differ from the inner class
(e.g., using smart pointers to implement containers)

> Containers and strings

" Behave as if their members were present directly
* Containers are initialized as empty - no need to initialize even containers of numeric types

> Data members - links without ownership
> References (U&)

" Explicit initialization required, destruction not required

" Copy/move constructors work smoothly
" Copy/move operator= is impossible
> Raw pointers (U*) without ownership semantics
Proper deallocation is ensured by someone else

" Explicit initialization required, destruction not required

" Copy/move work smoothly

> Data members - links with ownership
> Raw pointers (U*) with unique ownership

* Our class must deallocate the remote object properly

Explicit initialization required (allocate or set to zero)

Destruction is required (deallocate if not zero)

Copy methods must allocate new space a copy data

Move methods must clear links in the source object

In addition, copy/move operator= must clean the previous contents

> Raw pointer (U*) with shared ownership

* Our class must count references and deallocate if needed

Explicit initialization required (allocate or set to zero)

Destruction is required (decrement counter, deallocate if needed)
Copy methods must increment counter

Move methods must clear links in the source object

In addition, copy/move operator= must clean the previous contents

> Data members - smart pointers

> std::unique_ptr<U>
= Explicit initialization not required (nullptr by default)
" Explicit destruction not required (smart pointers deallocate automatically)
" Copying is impossible

If copying is required, it must be implemented by duplicating the linked object

" Move methods work smoothly

> std::shared_ptr<U>
" Explicit initialization not required (nullptr by default)
" Explicit destruction not required (smart pointers deallocate automatically)

" Copying works as sharing

If sharing semantics is not desired, other methods must be adjusted
- all modifying operations must ensure a private copy of the linked object

" Move methods work smoothly

> Conversion constructors

class T { @

T(U x);
}i
" Generalized copy constructor

" Defines conversion fromUto T

" If conversion effect is not desired, all one-argument constructors must be "explicit":
explicit T(U v);

> Conversion operators

class T { @

operator U() const;
b
" Defines conversion from T to U
= Returns U by value (using copy-constructor of U, if U is a class)

> Compiler will never use more than one user-defined conversion in a chain

> Various syntax styles
> C-style cast
(Te
" Inherited from C
> Function-style cast
T(e)
" Equivalent to (T)e
" T must be single type identifier or single keyword

> Type conversion operators

" Differentiated by intent (strength and associated danger) of cast:
const_cast<T>(e)

static_cast<T>(e)

reinterpret_cast<T>(e)

" New - run-time assisted cast:
dynamic_cast<T>(e)

dynamic_cast<T>(e)

> Most frequent use

" Converting a pointer to a base class to a pointer to a derived class

class Base { public:
virtual ~Base(); /* base class must have at least one virtual function */

}i

class X : public Base { /* ... */
}i

class Y : public Base { /* ... */
}i

Base * p = /* ... */;

X * xp = dynamic_cast< X *>(p);
if (xp) {/* ... */}
Y * yp = dynamic_cast< Y *>(p);
if (yp) { /% ... ¥/}

> POD: Plain-Old-Data

" Public data members
" The user is responsible for initialization

class T {
public:
std::string x_;

}i

" struct often used instead of class

struct T {
std::string x_;

};

> All data-members harmless
" Every data member have its own constructor

" The class does not require any constructor

class T {
public:
/] ...
const std::string & get x() const { return x_; }
void set x(const std::string & s) { x_ = s; }
private:
std::string x_;

}i

> All data-members harmless
" Every data member have its own constructor

" Constructor enables friendly initialization
" Due to language rules, the parameterless constructor is often needed too

class T {
public:
TO {}
explicit T(const std::string & s) : x (s) {}
T(const std::string & s, const std::string & t)
: x_(s), y (1)
{}
// ... metody ...
private:
std::string x_, y ;

}i

> Some slightly dangerous elements

* Some elements lack suitable default constructors
* Numeric types, including bool, char

* A constructor is required to properly initialize these elements
* Consequently, default (parameterless) constructor is (typically) also required
* One-parameter constructors marked explicit

class T {
public:
T() : x_(0), y_(0) {}
explicit T(int s) : x (s), y (0) {}
T(int s, int t)
: x_(s), y_(t)
{}
// ... metody ...
private:
int x_, y ;

}i

> Some very dangerous elements
" Pointers with (exclusive/shared) ownership semantics

" copy/move constructor/operator= and destructor required
Some additional constructor (e.g. default) is also required

class T {
public:
T() : p_(new Data) {}
T(const T & x) : p_(new Data(* x.p_)) {}
T(T && x) : p_(x.p) { x.p_=20; }
T & operator=(const T & x) { T tmp(x); swap(tmp); return * this;}
T & operator=(T && X)
{ T tmp(std::move(x)); swap(tmp); return * this;}
~T() { delete p_; }
void swap(T & y) { std::swap(p_, y.-p_); }
private:

Data * p_;
}i

> Classes containing unique_ptr

" Uncopiable class
" But movable

class T {
public:

T() : p_(new Data) {}
private:

std::unique_ptr< Data> p_;

}i

> Classes containing unique_ptr
" Copying enabled

class T {
public:
T() : p_(new Data) {}
T(const T & x) : p_(new Data(* x.p_)) {}
T(T & x) = default;
T & operator=(const T & x) { return operator=(T(x));}
T & operator=(T && x) = default;
private:
std::unique_ptr< Data> p_;

}i

> Abstract class
" Copying/moving prohibited

class T {

protected:

T() {}
T(const T & x) = delete;

T & operator=(const T & x) = delete;
public:
virtual ~T() {} // required for proper deletion of objects

}i

> Abstract class
" Cloning support

class T {

protected:

T(O) {}

T(const T & x) = default; // descendants will need it to implement clone
T & operator=(const T & x) = delete;

public:
virtual ~T() {}

virtual std::unique ptr< T> clone() const = 0;

}i

class Base { /* ... */ };

class Derived : public Base { /* ... */ }

>Derived class is a descendant of Base class
"Contains all types, data elements and functions of Base

"New types/data/functions may be added
*Hiding old names by new names is not wise, except for virtual functions

"Functions declared as virtual in Base may change their behavior by
reimplementation in Derived

class Base {

virtual void f() { /* ... */ }
}i

class Derived : public Base {

virtual void f() { /* ... */ }
}i

class Base {

virtual void f() { /* ... */ }
}i
class Derived : public Base {
virtual void f() { /* ... */ }
}i

" Virtual function call works only in the presence of pointers or references
Base * p = new Derived;

p->f(); // calls Derived::f although p is pointer to Base

" Without pointers/references, having functions virtual has no sense
Derived d;

d.f(); // calls Derived::f even for non-virtual f

Base b = d; // slicing = copying a part of an object
b.f(); // calls Base::f even for virtual f

= Slicing is specific to C++

> Abstract class
" Definition in C++: A class that contains some pure virtual functions
virtual void f() = 0;
* Such class are incomplete and cannot be instantiated alone
= General definition: A class that will not be instantiated alone (even if it could)
" Defines the interface which will be implemented by the derived classes

> Concrete class
" A class that will be instantiated as an object

" Implements the interface required by its base class

gh288s+Base few Derived;
public:

devéttupgl ~Base() {}
b

" If an object is destroyed using delete applied to a pointer to its base class, the

class DefdygdictoPWhe B3sE dass must be vitual

public:
virtual ~Derived() { /* ... */ }
> Rule of thumb:

};

" Every abstract class must have a virtug] destructor
* There is no additional cost (there are other virtual functions)
It will be probably needed

> Inheritance mechanisms in C++ are very strong
" Often misused

> Inheritance shall be used only in these cases

" |SA hiearachy
" Eagle IS A Bird
* Square-Rectangle-Polygon-Drawable-Object

" Interface-implementation
" Readable-InputFile
" Writable-OutputFile
* (Readable+Writable)-1OFile

> |SA hierarchy

= C++: Single non-virtual public inheritance
class Derived : public Base

= Abstract classes may contain data (although usually do not)

> Interface-implementation

= C++: Multiple virtual public inheritance
class Derived : virtual public Basel,

virtual public Base2

= Abstract classes usually contain no data
" Interfaces are not used to own (destroy) the object

> Often combined
class Derived : public Base,

virtual public Interfacel,

virtual public Interface2

> Misuse of inheritance - #1

class Real { public: double Re; };
class Complex : public Real { public: double Im; };

" Leads to slicing:
double abs(const Real & p) { return p.Re > 0 ? p.Re : - p.Re; }

Complex Xx;

double a = abs(x); // it CAN be compiled - but it should not

= Reference to the derived class may be assigned to a reference to the base class
" Complex => Complex & => Real & => const Real &

> Misuse of inheritance - #2

class Complex { public: double Re, Im; };
class Real : public Complex { public: Real(double r); };

" Mistake: Objects in C++ are not mathematical objects
void set to i(Complex & p) { p.Re = 0; p.Im = 1; }
Real x;

set to i(x); // it CAN be compiled - but it should not

* Real => Real & => Complex &

> Template
" a generic piece of code
" parameterized by types and integer constants

> Class templates
" Global classes

" Classes nested in other classes, including class templates
template< typename T, std::size t N>

class array { /*...*/ };

> Function templates
" Global functions

" Member functions, including constructors
template< typename T>

inline T max(T x, Ty) { /*...*/ }
> Type templates [C++11]
template< typename T>

using array3 = std::array< T, 3>;

> Template
" a generic piece of code
" parameterized by types and integer constants

> Class templates
" Global classes

" Classes nested in other classes, including class templates
template< typename T, std::size t N>

class array { /*...*/ };

> Function templates
" Global functions

" Member functions, including constructors
template< typename T>

inline T max(T x, Ty) { /*...*/ }
> Type templates [C++11]
template< typename T>

using array3 = std::array< T, 3>;

> Template instantiation
" Using the template with particular type and constant parameters

" Class and type templates: parameters specified explicitly
std::array< int, 10> Xx;

" Function templates: parameters specified explicitly or implicitly
" Implicitly - derived by compiler from the types of value arguments
int a, b, c;

a =max(b, c); // calls max< int>

" Explicitly
a = max< double>(b, 3,14);

" Mixed: Some (initial) arguments explicitly, the rest implicitly

> Multiple templates with the same name

> Class and type templates:
" one "master" template

template< typename T> class vector {/*...*/};

" any number of specializations which override the master template
partial specialization
template< typename T, std::size t n> class unique ptr< T [n]> {/*...*/};
= explicit specialization
template<> class vector< bool> {/*...*/};

> Function templates:
" any number of templates with the same name
= shared with non-templated functions

> Compiler needs hints from the programmer

> Dependent names have unknown meaning/contents

" type names must be explicitly designated
template< typename T> class X

{
typedef typename T::B U;
typename U::D p;
typename Y<T>::C q;
void f() { T::D(); } // T::D is not a type

" explicit template instantiations must be explicitly designated
" members inherited from dependent classes must be explicitly designated
template< typename T> class X : public T

{

void f() { return this->a; }

	Programming in C++
	Course credits
	Hello, World!
	Hello, World!
	Hello, World!
	Hello, World!
	Compilation and linking
	Single-module programs - static linking
	Multiple-module programs
	Module interfaces and linking
	make
	Integrated environment
	Static libraries
	Dynamic libraries (Microsoft)
	Dynamic libraries (Linux)
	.cpp/.hpp - best practices
	.cpp/.hpp - best practices
	Dependences in code
	Slide 19
	Declarations and definitions
	Declarations and definitions
	Class and type definitions
	Function declarations and definitions
	Variable declarations and definitions
	Storage classes
	Storage classes
	Dynamic allocation
	Dynamic allocation
	Arrays
	Array layouts
	Slide 31
	Selected number types
	Important non-number types
	Slide 34
	Class
	Three degrees of classes
	Type and static members of classes
	Uninstantiated classes vs. namespaces
	Class with data members
	Class with data members
	Slide 41
	Forms of pointers in C++
	C#/Java vs. C++
	C#/Java vs. C++
	C#/Java vs. C++
	C#/Java vs. C++
	C#/Java vs. C++
	C#/Java vs. C++
	Pointer/reference conventions
	Pointer/references
	Passing a pointer/reference in C++ - conventions
	Transferring unique ownership
	Transferring unique ownership
	Shared ownership
	Accessing without ownership transfer
	Holding pointers to locally allocated objects
	Class holding a reference
	ERROR: Passing a reference to local object out of its scope
	ERROR: Killing an object in use
	Allowing access temporarily
	Returning by reference
	Returning by reference
	Returning by reference
	Returning by reference
	Returning by reference
	Returning by reference
	Returning by reference
	Slide 68
	STL
	STL – Example
	STL
	STL
	STL
	STL - Ordered Containers
	STL - Unordered containers
	STL – Iterators
	STL – Iterators
	STL – Iterators
	STL – Insertion/deletion
	STL – insertion/deletion
	STL – insertion/deletion
	Slide 82
	Algorithms
	Algorithms
	STL – Algorithms
	Functors
	STL – Functors
	STL – Algorithms
	STL – Algorithms
	STL – Algoritmy
	Slide 91
	Lambda expressions
	Lambda expressions – return types
	Lambda expressions – capture
	Slide 95
	Constructors and destructors
	Special member functions
	Slide 98
	copy/move
	copy/move
	copy/move
	copy/move
	copy/move
	copy/move
	copy/move
	copy/move
	copy/move
	Slide 108
	Special member functions
	Type cast
	Dynamic cast
	Slide 112
	Class patterns
	Class patterns
	Class patterns
	Class patterns
	Class patterns
	Class patterns
	Class patterns
	Class patterns
	Class patterns
	Inheritance
	Virtual functions
	Classes in inheritance
	Inheritance and destructors
	Inheritance
	Inheritance
	Misuse of inheritance
	Misuse of inheritance
	Slide 130
	Templates
	Templates
	Templates
	Templates
	Writing templates

