MOTIVATION

What is the common most-accessed
subroutine of all executed C&C++ programs?

Transitively also of programs in Java, C# and .NETs, Python, Rust,
JavaScript, LISPs, Haskell, MLs, Golang, R, PHP, Ruby, shells, ...

MOTIVATION

What is the common most-accessed
subroutine of all executed C&C++ programs?

Transitively also of programs in Java, C# and .NETs, Python, Rust,
JavaScript, LISPs, Haskell, MLs, Golang, R, PHP, Ruby, shells, ...

malloc()

(or a matching variant thereof)

CUSTOM RESTRICTED MEMORY ALLOCATOR

Assignment #1

Advanced C++ course, KSI MFF UK

Intro

Memory management is a grave concern for implementation
of programming languages and low-level programs.

* Inner workings of the allocator are usually considered
black magic.

Memory management is a grave concern for implementation
of programming languages and low-level programs.

* Inner workings of the allocator are usually considered
black magic.

« Studying the inner workings of commonly used allocators
confirms the black magic.

MAIN GOALS OF THIS ASSIGNMENT

« Show that it is not that hard
(on a slightly simplified, non-general case)

MAIN GOALS OF THIS ASSIGNMENT

« Show that it is not that hard
(on a slightly simplified, non-general case)

* Practice the Allocator named requirement of C++ classes

+ Practice some common data structures used for
implementing allocators

+ Practice working with raw memory

Some of the main concerns
of memory allocator design

AS AN ALGORITHM

brk

malloc

Program Allocator

munmap

AS AN ALGORITHM

Program interface user asks for non-overlapping memory
blocks
OS interface the allocator can obtain potentially infinite
amount of memory using syscalls
Middle layer problems Mixed use of available memory
- constrol structures required for ensuring
that the memory does not overlap
« memory blocks for the user
Concerns - Consume the smallest possible amount of
OS resources
« Once allocated, user blocks can not be
moved
« Allocation/deallocation must be fast
+ Syscalls are slow

IMPLEMENTATIONS NOW

« glibc malloc internals:
https://sourceware.org/glibc/wiki/MallocInternals

» Doug Lea’s malloc (used before 2000):
http://g.oswego.edu/d1l/html/malloc.html

+ jemalloc: http://jemalloc.net/
« SLAB/SLUB allocators in Linux kernel

Common implementation concerns: Minimize space, time, and
anomalies; maximize locality, allow tuning.

https://sourceware.org/glibc/wiki/MallocInternals
http://g.oswego.edu/dl/html/malloc.html
http://jemalloc.net/

SUPPORT STRUCTURES — BITMAPS

Bitmaps are the simplest (and reasonably powerful) way to
store allocation information.

+ Describing vacancy in n blocks of memory takes n bits
« For n blocks of b bits, we need n - (1 + b) bits

SUPPORT STRUCTURES — BITMAPS

Operations:

Find a free block Scan the vacancy bits, return the position of
the first clear bit
Possible size vs. speed tradeoffs:

« remember a position for starting the scan
« remember total vacancy

Allocate a block Set the bit
Deallocate a block Clear the bit

SUPPORT STRUCTURES — BITMAPS

Operations:

Find a free block Scan the vacancy bits, return the position of
the first clear bit
Possible size vs. speed tradeoffs:

« remember a position for starting the scan
« remember total vacancy

Allocate a block Set the bit
Deallocate a block Clear the bit

What to do with multi-block allocations?

WHAT TO DO WITH MULTI-BLOCK ALLOCATIONS?

Naive approach: Store extra information about allocation size
in the bitmap.

WHAT TO DO WITH MULTI-BLOCK ALLOCATIONS?

Naive approach: Store extra information about allocation size
in the bitmap.

Problems:

+ Does not mix tiny vs. big blocks very well

- Eats extra memory for size annotation

WHAT TO DO WITH MULTI-BLOCK ALLOCATIONS?

Naive approach: Store extra information about allocation size
in the bitmap.

Problems:

+ Does not mix tiny vs. big blocks very well

- Eats extra memory for size annotation

Usual solution: Separate the bitmaps for small and big
allocations.

SUPPORT STRUCTURES — CHUNKS

To aid separation, memory is usually divided into chunks.

« Chunks form a double-linked list in the whole heap.
« Chunks contain

+ pointers to other chunks (the list may be circular)
« memory for block allocation

- bitmap

« just a single block
+ extra helpful information

+ was the chunk mmap-ed or does it reside on heap?
» how big is the chunk
+ what is the size of bitmap blocks

- Various alternative designs exist
(layered/multi-arena chunks, interval trees, ...)

10

CHUNK OPERATIONS

Initialize Find heap dimensions, store pointer to heap.
Create a chunk of sufficient size

1. Run through the linked list and find a free
piece of space between adjacent nodes
2. If there is no free space, ask OS for more
3. Modify the linked list.
Remove a free chunk

1. Modify the linked list to skip the chunk.
2. Return free space to OS, if viable.

1"

OVERALL DESIGN

+ Small chunks increase linked-list crawling overhead and
fragmentation

« Large chunks possibly increase memory inefficiency

Usual solution: Set a threshold on small vs. big allocation.

» Small allocation:

+ Bucket the allocations according to log, [size]
+ Use bitmaps of size smaller than the threshold

+ Big allocation: Use separate chunk.

12

ALLOCATION ALGORITHM FOR CHUNKS

1. Find the category of the allocation.

2. If the allocation is small, try to find a free bitmap of the
size and add the allocation.

3. If the allocation is big or a new bitmap is needed,
allocate a new chunk

4. If there is no space left, ask OS for space and retry

5. If OS refuses to give more memory, fail.

13

DEALLOCATION ALGORITHM FOR CHUNKS

1. Crawl through the list to find a chunk that contains the
pointer for deallocation
(chunks are intervals!)

2. Determine whether the chunk is a bitmap or single-block
3. Erase the block from the bitmap (if it's a bitmap)
4. Erase the chunk if it is empty.

14

Assignment

ASSIGNMENT

Write an allocator that works on a static area of memory with
known size.

On initialization, the algorithm receives a continuous
block of memory

The algorithm sets up any required management
structures on this memory

For testing, the algorithm will be required to handle a set
of allocate/deallocate requests from some simple
algorithm.

No 0OS communication will be required.

Usual allocators are reentrant. Your solution is
not required to be reentrant.

15

INTERFACE

Use the standard C++ allocator interface.

std::vector<int, some_allocator<int>> v;

16

INTERFACE — USING MORE THAN 1 HEAP

/* declare a static description of the heap object */
struct heap_holder {
static inblock_allocator_heap heap;

};

/* create the heap (this does not allocate memory!) */

inblock_allocator_heap heap_holder: :heap;

/* assign some memory */
heap_holder: :heap(0x6437856328, 10%1024%1024) ;

/* use in code */
std::vector<int, inblock_allocator<int, heap_holder>> vl1;

std: :vector<int, inblock_allocator<int, hh2>> v2,v3,v4; -

INTERFACE - YOUR IMPLEMENTATION

class inblock_allocator_heap {

// ...your static data here...

void operator() (void*ptr, size_t n_bytes) { ... };
s

template<typename T, typename HeapHolder>
class inblock_allocator {

// ...your solution here...
e
Wrap your solution in header file inblock_allocator.hpp.

If required, you can separate the solution into multiple
header files and . cpp modules. not required at all. Do not do it.

18

ALLOCATORS WITH NON-STATIC PARAMETERS

You can also pass dynamic allocator parameters using
prepared structures in containers:

explicit std::vector::vector
(const allocator_type& alloc = allocator_type());

The static information will be copied among the allocators
together with the allocator.

We will use the static approach.

19

CRITERIA

« The algorithm must only use the assigned memory area
* no malloc, mmap, brk or any other calls, from neither
inblock_allocator_heap nOr inblock_allocator
« extra O(1) of static storage allowed e.g. for storing the

pointer to the assigned memory

20

CRITERIA

« The algorithm must only use the assigned memory area
* no malloc, mmap, brk or any other calls, from neither
inblock_allocator_heap nOr inblock_allocator
« extra O(1) of static storage allowed e.g. for storing the
pointer to the assigned memory
« Allocation will correctly partition the assigned memory
area among the requests
« result of allocate will not overlap any other allocated

memory
 deallocate Wwill reliably make the memory available for

further use
- all allocated addresses will be aligned

20

CRITERIA

« The algorithm must only use the assigned memory area
* no malloc, mmap, brk or any other calls, from neither
inblock_allocator_heap nOr inblock_allocator
« extra O(1) of static storage allowed e.g. for storing the
pointer to the assigned memory
« Allocation will correctly partition the assigned memory

area among the requests
« result of allocate will not overlap any other allocated

memory

 deallocate Wwill reliably make the memory available for
further use

- all allocated addresses will be aligned

« Support data structures should be reasonably efficient

+ Avoid fragmentation

« Avoid large support structures

« Test programs will use peak 33% of the ‘raw’ memory
volume of the assigned memory area 2

HINTS

* Do not try to beat the standard malloc().
(but try not to be 1000x slower)

+ Available memory ‘heap’ will be relatively small (even
with the 300% overhead!), be careful with the thresholds.
« Various optimizations that can help the
performance&efficiency:
 Bitmaps may carry a pointer to the next bitmap of the
same block size
+ Heuristic to save memory: bitmap sizes may grow
exponentially from a relatively small number

21

HINTS — ALLOCATOR

Allocator named property specifies the members of
allocator-capable class that need to be present for the
interoperation with rest of C++ library.

See
https://en.cppreference.com/w/cpp/named_req/Allocator

You are not required to implement obsolete or optional
members, including:

 A::template rebind<U> — used for allocating different
types

« A::is_always_equal — used for optimizations in some
containers

* A::propagate_on_container_{move,copy,swap} — used

for controlling the lifetime of allocator object
22

https://en.cppreference.com/w/cpp/named_req/Allocator

HINTS — ALIGNMENT

Various CPUs do various weird things if you access memory
using unaligned pointers.

Pointer p is aligned to n iff

p=0 modn

Align all memory addresses to avoid trouble. Recommended
alignment is 8 bytes.

23

HINTS — HEURISTICS

Optimality of your solution depends on a lot of heuristics.

If going with big vs. small chunks,

« you don’t know what is the optimal threshold to expect,

+ any optimization on simple test cases can lead to
problems with bigger cases.

Solution:

+ Define the threshold as a constant so that we can change
(and fix) it easily during testing.

« Aim for robustness, not optimality.

24

HINTS — ALLOCATOR INTERFACE

Many containers require implementation of additional
allocator methods!

* A::operator==(const A&)
decide whether allocator instances are compatible (used
when e.g. moving containers)

* template<typename U> A(const A<U>&)
copy-construct from a same kind of allocator for different
type (used e.g. when containers need multiple data types)

25

HINTS — SUBMISSION

Submit to ReCodex.

You should be able to see (and enroll to) the Advanced C++ group.

task description
The testprograms will appear in ReCodex ASAP.

copy of the slides

EXTRA ADVICE — DEBUGGING

In this assignment, you have a relatively high
chance of getting segmentation faults because
of memory corruption.

Memory corruptions caused by allocators are
nearly impossible to debug using standard
means.

EXTRA ADVICE — DEBUGGING

Time-saving advice: Write the program in small, simple steps;
make sure that individual building blocks work correctly
before progressing further.

For example:

1. The interface works, but cheats by only calling malloc/free.

2. The solution allocates consecutive blocks on the given
memory heap, deallocate does not do anything.

3. The allocated blocks are formatted as chunks
4. The chunks may be found by a pointer and deallocated

5. Allocation can create bitmap chunks and select a viable
bitmap chunk for adding new data, but bitmap chunks are
never really removed

6. Bitmap chunks are correctly destroyed when the bitmap

becomes empty. 26

Evaluation

EVALUATION CRITERIA — MUST-HAVE

« Program builds from source on major compilers

 Program does not crash, freeze, abort, hang, segfault, die,
run into infinite loop, trigger OOM, throw an unhandled
exception, cause undefined behavior, ...

» Program does not leak any memory

- Test programs return the same results as with standard
allocator

27

EVALUATION CRITERIA — CODE METRICS

- less code is better

- easily readable code is better

- consistent formatting (try astyle or clang-format)
« reasonable identifier names

* no magic constants
« comments

+ Hint: include a comprehensive “structure of solution”
(SOS) comment on the top of the file

« C/C++-style efficiency measures
* -Wall, cppcheck (valgrind may not apply this time)

- portability to all major compilers

28

EVALUATION CRITERIA — BONUS STUFF

You may use bonus points to patch up some amount of point
loss from minor/pedantic issues.

Optional bonuses:

« Optimized finding of the next chunk

+ Optimized sizing of bitmaps

+ Measurable improvements in bitmap implementation
(avoid wasting instructions on individual bits)

« Performance better or comparable to std: :allocator
« Structure better than chunks+bitmaps

- [insert your brilliant idea here]

29

Q&A

	Intro
	Some of the main concerns of memory allocator design
	Assignment
	Evaluation

